Atlas Search and Vector Search Indexes
On this page
Overview
In this guide, you can learn how to create and manage Atlas Search and Vector Search indexes. These indexes allow you to use the following features:
Atlas Search: Perform fast, full-text searches
Atlas Vector Search: Perform semantic (similarity) searches on vector embeddings
Atlas Search and Vector Search indexes specify which fields to index, specify how these fields are indexed, and set other optional configurations.
This guide explains how to perform the following actions to manage your Atlas Search and Vector Search indexes:
Note
Sample Data
The examples in this guide use the embedded_movies
collection
in the sample_mflix
database, which is one of the Atlas sample
datasets. For instructions on importing the Atlas sample data, see
Load Sample Data in the Atlas documentation.
Create a Search Index Model
To create an Atlas Search index, you must first build a SearchIndexModel
instance
that sets your index specifications. To begin building a SearchIndexModel
instance,
call the SearchIndexModel::builder()
method.
Note
Instantiating Models
The Rust driver implements the Builder design pattern for the
creation of some struct types, including SearchIndexModel
. You
can use the builder()
method to construct an instance of each type
by chaining option builder methods.
The Rust driver provides the following SearchIndexModel
builder methods:
Builder Method | Parameter Type | Description |
---|---|---|
|
| Specifies the index definition. If you omit this setting, the driver creates an Atlas Search index with dynamic mappings. |
|
| Sets the index name. If you omit this setting, the
driver sets the name to |
|
| Sets the index type. If you omit this setting, the driver creates an Atlas Search index by default. |
To learn more about Atlas Search field mappings, see Define Field Mappings in the Atlas documentation.
To learn more about defining Atlas Vector Search indexes, see How to Index Fields for Vector Search in the Atlas documentation.
Example Models
The following example creates a SearchIndexModel
instance to provide
specifications for an index named search_idx
. The code specifies static
mappings of the title
and released
fields:
let def = doc! { "mappings": doc! { "dynamic": false, "fields": { "title": {"type": "string"}, "released": {"type": "date"} } }}; let idx_model = SearchIndexModel::builder() .definition(def) .name("search_idx".to_string()) .index_type(SearchIndexType::Search) .build();
The following example creates a SearchIndexModel
instance to provide
specifications for an index named vs_idx
. The code specifies the
embedding path as plot_embedding
, indexes 1536
dimensions, and
uses the "euclidean"
vector similarity function:
let def = doc! { "fields": [{ "type": "vector", "path": "plot_embedding", "numDimensions": 1536, "similarity": "euclidean", }] }; let idx_model = SearchIndexModel::builder() .definition(def) .name("vs_idx".to_string()) .index_type(SearchIndexType::VectorSearch) .build();
Create a Search Index
You can create an Atlas Search or Vector Search index on a collection by
calling the create_search_index()
method on a Collection
instance. This method accepts an index model as a parameter, specified
in a SearchIndexModel
instance.
Example
The following example creates an Atlas Search index on the
embedded_movies
collection. The code creates a SearchIndexModel
that sets the index name and enables dynamic mapping. Then, the code
passes the SearchIndexModel
instance to the create_search_index()
method to create the Atlas Search index:
let idx_model = SearchIndexModel::builder() .definition(doc! { "mappings": doc! {"dynamic": true} }) .name("example_index".to_string()) .build(); let result = my_coll.create_search_index(idx_model).await?; println!("Created Atlas Search index:\n{}", result);
Created Atlas Search index: "example_index"
Create Multiple Search Indexes
You can create multiple Atlas Search and Vector Search indexes
by calling the create_search_indexes()
method on a Collection
instance. This method accepts a vector of SearchIndexModel
instances
as a parameter.
Example
This example performs the following actions:
Creates a
SearchIndexModel
instance that specifies an Atlas Search index namedas_idx
Creates a
SearchIndexModel
instance that specifies an Atlas Vector Search index namedvs_idx
Passes a
vec
of bothSearchIndexModel
instances to thecreate_search_indexes()
methodCreates the Atlas Search and Vector Search indexes on the
embedded_movies
collection
let as_idx = SearchIndexModel::builder() .definition(doc! { "mappings": doc! {"dynamic": true} }) .name("as_idx".to_string()) .build(); let vs_idx = SearchIndexModel::builder() .definition(doc! { "fields": [{ "type": "vector", "path": "plot_embedding", "numDimensions": 1536, "similarity": "euclidean", }] }) .name("vs_idx".to_string()) .index_type(SearchIndexType::VectorSearch) .build(); let models = vec![as_idx, vs_idx]; let result = my_coll.create_search_indexes(models).await?; println!("Created indexes:\n{:?}", result);
Created Atlas Search indexes: ["as_idx", "vs_idx"]
List Search Indexes
You can access information about a collection's existing Atlas Search
and Vector Search indexes by calling the list_search_indexes()
method on the collection.
Example
The following example accesses information about the Atlas Search and
Vector Search indexes created in the Create Multiple Search Indexes
section of this page. The code calls the list_search_indexes()
method and prints a list of the Atlas Search and Vector Search indexes
on the collection:
let mut cursor = my_coll.list_search_indexes().await?; while let Some(index) = cursor.try_next().await? { println!("{}\n", index); }
{ "id": "...", "name": "as_idx", "status": "READY", "queryable": true, "latestDefinitionVersion": {...}, "latestDefinition": { "mappings": { "dynamic": true } }, "statusDetail": [...] } { "id": "...", "name": "vs_idx", "type": "vectorSearch", "status": "READY", "queryable": true, ..., "latestDefinition": { "fields": [{ "type": "vector", "path": "plot_embedding", "numDimensions": 1536, "similarity": "euclidean" }] }, "statusDetail": [...] }
Tip
To learn more about iterating through a cursor, see the Access Data by Using a Cursor guide.
Update a Search Index
You can update an Atlas Search or Vector Search index by calling the
update_search_index()
method on a Collection
instance. This
method accepts the following parameters:
Name of the index to update
Modified index definition document
Example
The following example updates the Vector Search index named vs_index
created in the Create Multiple Search Indexes section of this page. The code
creates a new index definition document that instructs the index to use
"dotProduct"
as the vector similarity function. Then, the code calls
the update_search_index()
method to update the index:
let name = "vs_index"; let updated_def = doc! { "fields": [{ "type": "vector", "path": "plot_embedding", "numDimensions": 1536, "similarity": "dotProduct", }] }; my_coll.update_search_index(name, updated_def).await?;
Delete a Search Index
You can delete an Atlas Search or Vector Search index by calling the
delete_search_index()
method on a Collection
instance. This
method accepts the name of the index to delete as a parameter.
Example
The following example deletes the Atlas Search index named example_index
created in the Create a Search Index section of this page. The code
passes the index name to the delete_search_index()
method to delete the index:
let name = "example_index"; my_coll.drop_search_index(name).await?;
Additional Information
To learn about other indexes you can create by using the Rust driver, see the Indexes guide.
To learn more about Atlas Search, see the following Atlas documentation:
To learn more about Atlas Vector Search, see the following Atlas documentation:
API Documentation
To learn more about the methods and types mentioned in this guide, see the following API documentation: